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Transfer matrix method for enumeration and generation of compact
self-avoiding walks. I. Square lattices
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Building 12B, Room B116, MSC 5677, Bethesda, Maryland 20892-5677
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The transfer matrix method has been developed to enumerate and generate compact self-avoiding
walks in two dimensions on the square lattice within rectangular strips of sizem3n. The method
is significantly superior to the traditional method of computer generation of self-avoiding walks,
because it is attrition-free, i.e., each computation leads to successful conformations, with no failures.
The method is generalized to irregular shapes, and the extension of the method to the Monte Carlo
sampling of the compact conformational space is proposed. Application of this new method to
protein conformation generation is discussed, with the possibility of including several types of
constraints. ©1998 American Institute of Physics.@S0021-9606~98!50533-8#
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INTRODUCTION

The generation and enumeration of all possible con
mations of macromolecules is one of the most important
fundamental problems in polymer science. Various
proaches have been taken. The most common requirem
has been for a representative set of conformations of a
dom coil, which usually are taken to be on a lattice of o
type or another. The simplest representation of a random
polymer is a random walk on a lattice. In this case the
cluded volume of the chain is neglected~the chain is phan-
tom! and the number of possible walksNn0

of n0 steps on the
lattice with the connectivity numberz ~the number of neares
neighbors to each site! is

Nn0
5zn0. ~1!

The distribution of the end-to-end distance for extrem
long (n0→`) phantom chains is Gaussian.

The simple random walk, neglecting excluded volume
however not a realistic model for the polymer chain. A mu
better approximation is the random self-avoiding walk on
lattice, where any lattice site cannot be visited more th
once. The condition of self-avoidance complicates the ma
ematical treatment of the problem, and there is no sim
analytical formula@similar to Eq.~1!# relating the number of
possible conformations~walks! Nn0

to the length of the chain
n0 . Actually, there is some evidence that the self-avoid
walk problem belongs to the ‘‘unsolvable’’ class of mat
ematical problems, i.e., there is no solution in terms ofD-
finite functions~usual functions of mathematical physics!.1

For shorter chains the usual practice has been to enu
ate completely self-avoiding walks. For example enume
tions of self-avoiding walks on the square lattice up to
steps have been published.2 The number of conformation
grows exponentially with the length of the chain, and t
exact enumerations for longer chains are computation
limited. It has been found that for long chains (n0→`) the
number of possible conformations scales withn0 as
5130021-9606/98/109(12)/5134/13/$15.00
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Nn0
'n0

g21mn0, ~2!

whereg is an universal exponent dependent only on the
mensionality of the system, whilem is a lattice dependen
constant which satisfies the inequalityz/2,m,z21. Renor-
malization group theory calculations predict~nonrigorously!
the exact value of the exponentg to be 43/3251.343 75 in
2D and estimate the value ofg to be 1.161560.0011 in 3D.3

For longer chains, where the complete enumerations
conformations are impossible, the common practice in ch
generations has been to utilize various Monte Carlo
proaches to sample the conformational space.4 In addition
another approach was used in which generator matrices w
utilized to calculate average properties of all conformatio
of a random coil.5

Globular proteins differ from random coils since the
have dense, compact cores as a result of the substantial
regation between hydrophobic and polar residues. Beca
of their dense cores, compact self-avoiding walks~chains! on
lattices provide an excellent model for globular proteins.6–18

A compact self-avoiding walk is defined here as a se
avoiding walk within a compact shape, such that all si
within the shape are occupied; there are to be no voids.

The compact self-avoiding walks are essentially equi
lent to the mathematical problem of Hamiltonian pat
~Hamiltonian walks!. A Hamiltonian walk over a graph visits
all points of graph exactly once. There are no sites left
visited, and each site is visited only once. A Hamiltoni
walk that returns to the starting point is called Hamiltoni
circuit. Figure 1~a! shows an example of a Hamiltonian pat
and Fig. 1~b! a Hamiltonian circuit on the square lattice, bo
within the 437 rectangle.

It has been shown that such a dense compact state
large reductions in the number of conformations. The co
puter enumerations of compact self-avoiding walks ha
been reported by various authors.7,9,10,14,15,19–21For long
chains there is a relation between the number of comp
conformationsNn0 ,p and the total length of the chainn0 ,
4 © 1998 American Institute of Physics
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with p sites located on the exterior~boundaries! of the com-
pact shape

Nn0 ,p'm0
pkn0, ~3!

wherek>1 is a connective constant, andm0<1 is a con-
stant@different fromm in Eq. ~2!# accounting for the effect o
the periphery of the shape. It has been shown that in
limiting case (n0→`) when Hamiltonian circuits homoge
neously cover the whole lattice the connective constank
may be approximated by

k5z/e, ~4!

wherez is lattice connectivity number (z54 for the square
lattice! ande52.71828 . . . is theEuler constant.3

The generation and enumeration of all, or of as many
possible, compact conformations is a critically importa
problem for protein folding. The native conformations
proteins are compact and unique. The essence of the pr
folding problem is to find, for a given sequence of ami
acids the most favorable conformation. This search fo
unique form means that random search methods will o
fail; complete enumerations, whenever feasible, are pre
able. Popularly, this has been termed looking for a needl
a haystack. The number of possible conformations even
small proteins containing, say 50 residues, is extrem
large. Even if we use a lattice and restrict the conformatio
space by searching only for those conformations within
specified volume and shape the problem is still a comp
tional challenge for longer chains.

The standard method for generating compact confor
tions on lattices are self-avoiding walk calculations, eith
with enumerations or Monte Carlo methods. With the se
avoiding walk method it is theoretically possible to gener
and enumerate all possible compact conformations with
given volume, but because of the fast growth in the num
of possible conformations and because of the high attri

FIG. 1. Examples of a Hamiltonian path~a! and a Hamiltonian circuit~b!
within the 437 square lattice.
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due to the self-avoiding~excluded volume! restriction, the
time required for computations grows geometrically with t
length of the chain, and becomes prohibitively long f
chains of more than 30–50 bonds, the difficulty depend
on the specific details of the lattice used.

The most important obstacle to the computer genera
of random coil conformations is attrition. We may define t
attrition as the ratio of the number of accepted~satisfying
self-avoidance condition! random walksNsa to the total num-
ber of generated random walksN0 . It has been shown tha
this ratio decays exponentially with the length of the cha
n0

Nsa/N05exp~2ln0!, ~5!

where the attrition constantl depends on the type of lattice
Generallyl is larger, and the decay is faster, for lattices w
a smaller coordination numberz, and for lower dimensions
~2D rather than 3D!. Hemmer and Hemmer showed that a
average random self-avoiding walk on a square lattice la
71 steps, and will terminate due to self-avoidance.22

For compact structures, such as proteins the attrit
problem is even more severe and limits all studies of prot
folding. For example in a computer generation of comp
self-avoiding walks~Hamiltonian paths! on rectangles of size
63n on the square lattice we found21 that for n52 the per-
centage of steps leading to successful self-avoiding con
mations is 12.5%, but forn55 only 0.99%, and forn57
only 0.17%. ~The computer program was terminating th
count of the number of steps of the walk when a dead-
due to the self-avoidance was encountered.! We may esti-
mate that forn514 only about 1 step in 106 steps leads to a
successful conformation, and forn520 only 1 step in ap-
proximately 109 steps leads to a self-avoiding conformatio
Of course for lattices with a higher coordination numberz,
like the cubic lattice (z56), the attrition is smaller than fo
the square lattice (z54), but it still is a major obstacle to the
efficient generation of compact conformations.

For Monte Carlo methods a random generation of c
formations is utilized, but the use of this method for high
compact states is quite limited, principally because of
high attrition. In addition, since the native conformation
unique, there remains a finite chance of never locating it w
such a random sampling of conformational space.

All previous approaches to generating conformations
this state have encountered inefficiencies became of d
ends and unoccupied, isolated holes.14 The present approac
overcomes all of these difficulties in a direct way.

THE TRANSFER MATRIX METHOD

A new approach to the generation and enumeration
compact conformations on lattices that avoids the high a
tion problem is the transfer matrix method. This method w
originally proposed in the early 1980s by Derrida23 and
Klein,24 and used by Schmalzet al.25 for enumerations of
Hamitonian circuits within rectangles on the square lattic

We will first describe briefly this method and demo
strate its application to the generation and enumeration
Hamiltonian circuits on the square lattice in 2D. Then w
present the extension of this method to Hamiltonian pa
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~chains! with two ends on the square lattice. We will als
discuss the extension of this method to irregular comp
shapes and the possibility of the sampling of the conform
tional space with this approach. In a subsequent paper
will develop the transfer matrix method for the generati
and enumeration of both Hamiltonian circuits and Ham
tonian paths in three dimensions on the cubic lattice. So
of these important results were recently reported in a B
Communication.26

The main simplifying idea in the transfer matrix metho
is to take individually each column of sites inside the re
angle on the square lattice and define as ‘‘states’’ the c
nectivities of these sites through the part of the chain on
side, here the left side of the given column.~The left side is
a convention that we use, by assuming that the rectang
being built starting from the left to the right. Also the choic
of columns instead of rows is a convention.! The connectiv-
ity state is then defined as a set of graphs joining all pair
sites in a given column connected through the chain ex
nally to the left. With such a definition of ‘‘state’’ there ar
relatively few allowed ‘‘transitions’’ from a given state t
the neighboring states, and these are easily specified
general way as will be shown below.

To illustrate this method let us consider, as an exam
the enumeration of Hamiltonian circuits on a square latt
constrained to them3n rectangular strip having widthm
54 and variable lengthn. Figure 2~a! shows all possible
external connectivities to one side~left! of the 4 sites in a
column. Figure 2~b! shows all possible distributions of bond
among the 4 points on a line, including the case having
bonds at all~#1I!. We note that intersecting connectivitie
such as number 9 in Fig. 2~a! are not allowed in two dimen
sions. For 4 points there are thus 8 connectivity states~non-
intersecting connectivities!. However two of these state
@numbers 4, and 5 in Fig. 2~a!# are not possible for circuits

FIG. 2. The connectivity states~a! and bond distributions~b! for the gen-
eration of Hamiltonian circuits within 43n rectangles on the square lattic
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on 43m rectangles, for parity reasons~which is explained
later!, so the actual number of possible connectivity state
further reduced to 6. The condition that connectivities can
intersect will lower significantly the number of allowe
states for larger widths~cross sections! of the rectangle. The
number of possible distributions of bonds betweenm sites in
a column is 2m21.

To better understand the idea of connectivity states
and bond distributions let us consider the Hamiltonian circ
on the the 437 lattice shown in Fig. 1~b!. The vertical bond
distributions ~starting from the left! are 8I , 3I , 4I , 6I , 3I , 1I , 7I
@from Fig. 2~b!#. The connectivity states@from Fig. 2~a!#
starting from the left are 6, 8, 1, 6, 8, 8 respectively. The fi
connectivity state~starting from the left! is state number 6
@from Fig. 2~a!# because in the second column of sites on
sites 02 and 25 are connected through the chain on the
The next connectivity state is state number 8@from Fig. 2~a!#
because this corresponds to the left-side connectivity of s
03 and 24, and 20 and 23 in the third column of sites, et

Before illustrating the method of the construction of t
transfer matix we discuss the problem of counting the nu
ber of connectivity states for Hamiltonian circuits.

COUNTING CONNECTIVITY STATES FOR CIRCUITS

The main limitation to the transfer matrix method
caused by the rapidly growing number of connectivity sta
as we increase the width~cross section! m of the rectangle.

For m54 there are 8 nonintersecting connectivity sta
as seen in Fig. 2~a!, but this number was further reduced to
by taking account of parity considerations.

The important problem is to evaluate the number of p
sible connectivity states for compact circuits on the squ
lattice for any widthm of the rectangular strip. The numbe
of all possible different pairwise connectivities ofm points
on the line, wherem is an even number, andall points are
pairwise connected but each point can be connected
only one other point, and additionally intersections of co
nectivities are allowed is given by the formula

Mm5~m21!~m23!...15~m21!!!. ~6!

For example form56 there are 5!!55•3•1515 different
possibilities as shown in Fig. 3~a!, and for m54 there are
3!! 53 @connectivity states 7,8,9 in Fig. 2~a!#. For odd num-
bers of pointsm the number of possible pairwise connectiv
ties of m21 points equals (m22)!! and there arem possi-
bilities of chosing one unconnected point, soMm5m!!. This
is illustrated by Fig. 3~b! for m55.

In two dimensions intersecting connectivities are not
lowed. For example for them56 points shown in Fig. 3~a!
out of the 15 possibilities only 5 connectivities fulfill thi
condition @numbers 1, 3, 7, 13, and 15 in Fig. 3~a!#. It is
possible to derive the recursive formula for the numberMm

of possible connectivities of an even number ofm points
when the intersecting connectivities are eliminated. First
should note that for an even number of pointsm the connec-
tivities between points separated by an odd number of s
are not allowed, because it would lead to intersecting c
nectivities in the process of completing the connectivities
all m points.
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FIG. 3. All possible different pairwise connectivities ofm points on the line, where maximum possible points are pairwise connected and intersecti
connectivities are allowed. The cases of an even number of pointsm56, and an odd number of pointsm55 are shown in Figs. 3~a! and 3~b! separately.
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Let us, for illustration, consider the case ofm58 points
shown in Fig. 4. The first point can be connected with
2nd, 4th, 6th, and 8th. The remaining points can be c
nected as inM6 , M2M4 , M4M2 , and M6 different ways,
respectively. This leads to a simple recurrence formula
the number of possible non-intersecting connectivities
tweenm52n points,

M2n5 (
k50

n21

M2n2222kM2k ~7!

with the conventionM05M251. Equation~7! is similar to
the definition in combinatorics of the Catalan numbersCn ,

Cn5 (
i 51

n21

CiCn2 i5
1

n S 2n22
n21 D ~8!

FIG. 4. The illustration for the derivation of Eq.~7!. All possible connec-
tivities of the uppermost point to other sites in the column form58 points.
e
-

r
-

with the conventionC050, C151. The relation between
M2n and the Catalan numbers leads to the compact form
for M2n shown below

M2n5Cn115
1

n11 S 2n
n D . ~9!

Table I compares the numbers of different possible pairw
connectivities of allm52n points with intersections allowed
and for all possible pairwise nonintersecting connectivit
calculated from Eqs.~6! and~9!, respectively. Table I shows
that the condition of the elimination of intersecting conne

TABLE I. The number of pairwise connectivities of an even numberm of
sites in a column, such that all points are connected and each poi
connected only once. The first column shows the number of such poss
ties Mm calculated from Eq.~6! when intersections are allowed, and th
second column showsMm calculated from Eq.~9! when intersecting con-
nectivities are not allowed.

m
Mm5(m21)!!

intersections allowed
Mm @Eq. ~9!#

intersections eliminated

2 1 1
4 3 2
6 15 5
8 105 14

10 945 42
12 10 395 132
14 135 135 429
16 2 027 025 1 430
18 34 459 425 4 862
20 654 729 075 16 796
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tivities in two dimensions is extremely effective in reducin
the numbers, especially for wide strips. In three dimensi
such a condition cannot be applied, and the number of p
sible connectivities grows extremely rapidly; hence the e
merations of compact conformations in 3D are somew
more difficult as will be shown in a subsequent paper.

Equation~9! gives the number of all possible noninte
secting connectivities ofm52n points, such that all the
points are connected. The number of all possible nonin
secting connectivities without the condition that all poin
are connected follows the binomial distribution

Nm
circ5 (

k51

@m/2#
m!

~m22k!! ~2k!!
M2k

5 (
k51

@m/2#
m!

~m22k!! ~k!! ~k11!!
. ~10!

Here @m/2# denotes the integer part of the numberm/2 and
this formula is valid both for even and oddm. For example
for m54 there are 8 nonintersecting connectivity sta
shown as the first eight states in Fig. 2~a!. Six of these states
have a single connection (k51), and two have a pair o
connections (k52). The first column in Table II shows th
numbers of all possible connectivity statesNm

circ for circuits
on the square lattice calculated from Eq.~10! for varying m.

We should note that some of these connectivity sta
cannot occur because for parity reasons. We may subs
tially reduce the number of all possible connectivity states
removing states having impossible parities.

Let us consider a column composed ofm sites. To each
site of the column we assign a parity value 1 or21. We may
use a convention that sites with odd numbers: 1,3,5, . . .
have parity21, and sites with even numbers 2,4,6, . . . have
parity 11. The parity of the connectivity state is now defin
as the sum of the parities of allunconnectedsites. For ex-

TABLE II. The number of possible connectivity states form points distrib-
uted along the line for varyingm. HereNm

circ andNm
chain denotes the numbers

of connectivity states for Hamiltonian circuits, and Hamiltonian chains,
spectively. The numbersNm

circ,r andNm
chain,r denote the numbers of connec

tivity states for Hamiltonian circuits and Hamiltonian chains reduced
eliminating states with the wrong parity.

m Nm
circ Nm

circ,r Nm
chain Nm

chain,r

2 1 1 4 4
3 3 3 12 12
4 8 6 36 34
5 20 19 105 104
6 50 32 311 293
7 126 113 924 911
8 322 182 2 766 2 626
9 834 706 8 313 8 185

10 2 187 1 117 25 072 24 002
11 5 797 4 647 75 790 74 640
12 15 510 7 280 229 494 221 264
13 41 834 31 886 695 721 685 773
14 113 633 49 625 2 110 824 2 046 816
15 310 571 6 407 756
16 853 466 19 458 562
s
s-
-
t

r-

s

s
n-
y

ample, the parity of the connectivity state #1 shown in F
2~a! is 0 and the parity of the connectivity state #5 shown
Fig. 2~a! is 22.

Connectivity states which having anabsolutevalue of
parity larger than 1 are unphysical and may be eliminated
is relatively easy to understand this conjecture for states w
single connectivity~only two sites in a column connected!
and an even numberm of sites in a column. The part of th
rectangle for the Hamiltonian circuit corresponding to th
connectivity state~the part of the rectangle to the left of th
column associated with the state under consideration! always
contains an even number of sites. Each point (i , j ) of the
rectangle has a defined parityp( i , j ) which is either11 or
21, and which can be calculated from the formula

p~ i , j !52 mod~ i 1 j ,2!21 ~11!

with 1< i<m, and 1< j <n, so there is a chessboardlik
structure to the distribution of parities of sites within th
rectangle. Each single step of the walk on the square lat
connects only sites of opposite parity, and the walk throu
the even number of sites in the left part of the rectan
always leads to the situation when the starting site of
walk and the ending site of the walk must have oppos
parities. This means that two connected sites of the sin
connectivity state must also have opposite parities, i.e.,
sum of parities of the unconnected sites is zero~for evenm!.

When we have an odd numberm of sites in a column,
the walk in the part of the rectangle on the left of the colum
of sites corresponding to the considered connectivity s
can have passed through an even or an odd number of s
depending on the number of columns. When the numbe
sites in that part of the rectangle is even the situation
similar to the one considered earlier, and the start and the
sites of the walk must have opposite parities@as in Fig. 5~a!#.
If the number of sites in that previous part of the rectan
were odd, then the walk must start and end at sites of
same majority parity@like in Fig. 5~b!#. Figure 5~c! shows an
example of an unallowed unphysical connectivity state.

The situation becomes more complicated if there is m
than one pair of connected sites in the connectivity state.
connections between two sites with the same parity~e.g.,
11! is possible if there is another connection between t
sites each with parity21, compensating the total parity o
the state. An example of such a state is shown in Fig. 5~d!.

-

FIG. 5. Examples of physical~a!, ~b!, ~d! and unphysical~c!, ~e! connectiv-
ity states.
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Again, the absolute value of the sum of parities of the u
connected sites in the connectivity state, however canno
larger than 1. Figure 5~e! shows an example of such an u
physical connectivity state.

The second column in Table II shows the reduced nu
ber of all possible connectivity states for Hamiltonian c
cuits Nm

circ,r calculated for varyingm, after elimination of
connectivity states with wrong parities. We see that a sign
cant number of connectivity states can be eliminated, es
cially for a large, even width of the rectanglem. The reduc-
tion of the number of states is much less for oddm, because
states with wrong parity@such as in Fig. 5~c!# are relatively
rare.

The number of all possible distributions of vertic
bonds within a column ofm sites for Hamiltonian circuits is
much easier to calculate and it is

Bm52m21. ~12!

Figure 2~b! shows all possible bond distributions form54.

TRANSFER MATRIX FOR HAMILTONIAN CIRCUITS

To illustrate the method we consider the enumeration
Hamiltonian circuits on a square lattice for them3n rectan-
gular strip with fixed widthm54 and variable lengthn. The
transfer matrixT is constructed by combining all connectiv
ity states@Fig. 2~a!# with all bond distributions@Fig. 2~b!# for
one column of sites and finding the resulting connectiv
states of the next column~to the right! formed by the feasible
combinations. Figures 6~a!–6~g! illustrate several simple
cases. The1 sign denotes the combination of connectiv
states and bond distributions and the→ sign indicates the
product states of this combination. For example, the com
nation of the connectivity state number 1@from Fig. 2~a!#
and the bond distribution number 4I @from Fig. 2~b!# shown in
Fig. 6~a! leads to connectivity state number 7 from Fig. 2~a!.
We can therefore define a step or ‘‘transition’’ from conne
tivity state 1 to state 7. Figures. 6~b! and 6~c! are other ex-
amples of allowed transitions. The combinations which le
to triple connections such as the combination shown in F
6~d!, to the formation of small completed loops@like the one
shown in Fig. 6~e!#, or leave some of the sites unoccupi
@Fig. 6~f!# are not allowed. Figures. 6~g! and 6~h! show ex-
amples of combinations which complete the formation
Hamiltonian circuits.

As we stated earlier the transfer matrixT is constructed
by combining the connectivity states with bond distributio
and finding out the connectivity state of the next neighbor
column of sites on the right. The elementTi j of the transfer
matrix is zero if there is no possible transition from conne
tivity state i to statej. If there are possible transitions from
statei to statej thenTi j shows the number of different way
to realize this transition. We should note that for Ham
tonian circuits on the square lattice the transitions betw
connectivity states are unique, so that the elementsTi j of the
matrix T are either 0 or 1, but generally~for Hamiltonian
circuits in three dimensions on the cubic lattice, or for cha
with ends! there can be multiple ways to achieve the tran
tion between two connectivity states, by using different d
tributions of bonds, and some of the elements of the tran
-
be
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f
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-
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f
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matrix Ti j can be integers larger than 1. We could of cou
define each state as a unique combination of a connect
state and a distribution of bonds, so that the elements of
transfer matrix for such defined states would always be 0

FIG. 6. Illustration of considerations entering into the construction of
transfer matrix for the enumeration of Hamiltonian circuits within 43n
rectangles on the square lattice.
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1; however, such a generalized definition of states wo
substantially increase the size of the transfer matrixT.

We first construct the vectoru of the starting states with
elementsui , for each connectivity statei @such as in Fig.
2~a!# as the first state on the left in the process of buildin
circuit ~we use a left to right convention!. The numberui

counts the number of different ways in which this may
realized. For closed circuits in two dimensions on the squ
lattice the elements of the vector of the starting states
either 0 or 1, but in three dimensions or for chains with en
ui can be an integer larger than 1. As starting states we
the distributions of bonds@such as shown in Fig. 2~b!# which
do not contain any unoccupied sites@#7I and #8I in Fig. 2~b!#
and figure out the connectivity state to which the given d
tribution of vertical bonds transforms if the horizontal bon
connecting those vertical bonds to bonds to the neighbo
column on the right side are added. For example distri
tions #7I and #8I in Fig. 2~b! transform to connectivity states
and 6 in Fig. 2~a!, respectively.

We also construct the vectorv of ending states with
elementsv i showing how a given connectivity statei may
form a closed circuit by combining it with the distribution o
vertical bonds@this is illustrated by Figs. 6~g! and 6~h!#. For
Hamiltonian circuits in two dimensions the components
the vectorv are either 0 or 1, but for chains with ends~or for
closed circuits in three dimensions! v i may be an integer
larger than 1. The possible ending connectivity states
states 6 and 8 in Fig. 2~a!.

For example, if we remove connectivity states 4, 5~for
parity reasons! and 9~because it is impossible in two dimen
sions! in Fig. 2~a! and renumber the remaining states from
to 6, then the transfer matrixT, and the vectors of the star
ing statesu and the ending statesv are

T5S 0 0 0 1 1 0

0 0 0 1 0 0

0 0 0 1 1 0

1 1 1 0 0 1

0 0 0 1 1 0

1 0 1 0 0 1

D , uT5~000110!,

v5S 0
0
0
1
0
1

D . ~13!

The numberNc of possible Hamiltonian circuits on the rec
angle of sizem3n on the square lattice is then given by th
simple formula

Nc5uT~T!n22v. ~14!

RESULTS FOR CIRCUITS

The enumerations of Hamiltonian circuits within recta
gular stripsm3n of the varying lengthn were first published
by Schmalz, Hite, and Klein in 1984.25 The enumerations
ld
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published by these authors provided only for the cases w
bothn andm were even. For the case when bothm andn are
odd the formation of the Hamiltonian circuit is, of cours
impossible andNc equals zero. Table IV shows the results
enumerations for varying values ofn and m ~both odd and
even! and extended to numbersNc as large as 1026. There is
complete numerical agreement with the results of Schm
Hite, and Klein25 and with traditional computer enumeration
of Hamiltonian circuits by self-avoiding walks.21 Figure 7
shows the plot of the number of circuitsNc vs the lengthn of
the rectangle for varying widthm of the m3n rectangle.

The main difficulty in the extension of these enume
tions to rectangular strips with larger widthm, is the rapidly
growing number of connectivity states as discussed ear
The discussion about a possible approach to systems
extremely large number of connectivity states is provided
the last part of the paper.

TRANSFER MATRIX METHOD FOR HAMILTONIAN
PATHS

One of the main purposes of this paper is to extend
transfer matrix method to Hamiltonian paths~i.e., Hamil-
tonian chains with two ends! on the square lattice. To exten
the method to Hamiltonian chains in two dimensions on
square lattice we generalize the definition of the connectiv
state to include all connectivities havingup to two ends. This
means that we consider individual connectivity states for
cuits ~no ends! presented above, and additionally we co
sider connectivity states with one end and two ends. Fig
8~a! shows all possiblenonintersectingconnectivities for 4
sites in a column. The connectivities to ends are represe
on the connectivity diagrams as single connected left-si
lines, while the regular connectivities of two points are re
resented by left-sided arches joining two points. The firs
connectivity states in Fig. 8~a! are the same as in Fig. 1~a!
and contain no connections with ends.~The states 4 and 5
again do not contribute to the formation of final Hamiltonia
chains and can be eliminated, due to parity reasons, as
closed circuits.! The states 9–24 contain connectivitie
specifying the position of one end, and the remaining sta

FIG. 7. The plot of the number of possible Hamiltonian circuitsNc vs the
lengthn for varying widthsm of the m3n rectangle.
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FIG. 8. The connectivity states~a! and bond distributions~b! for the generation of Hamiltonian paths~chains! within 43n rectangles on the square lattice
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25–36 contain connectivities placing two ends. Similarly
generalize the definition of the distribution of bonds by a
including the end points of the chain. Figure 8~b! shows all
possible distributions ofbonds and endsof the chain. The
end points in Figs. 8~b! are represented by small circles. Th
first 8 distributions in Fig. 8~b! are the same as in Fig. 1~b!
and contain no ends of the chain. The distributions from 9I to
36I contain one end of the chain, and the remaining distri
tions contain two ends. We note that distributions contain
the two ends attached to the same single bond~or to a se-
quence of connected bonds! are not allowed, because th
would terminate the chain. Also the ending points cannot
placed in the middle of a sequence of connected bonds.

To illustrate better the idea of connectivity states a
and bond distributions for Hamiltonian paths let us consi
the Hamiltonian path on the the 437 lattice shown in Fig.
1~a!. The vertical bond distributions~starting from the left!
-
g

e

d
r

are 28I, 4I , 22I, 3I , 1I , 1I , 7I @from Fig. 8~b!#. The connectivity
states@from Fig. 8~a!# starting from the left are 21, 15, 27
32, 32, 32, respectively. The first connectivity state~starting
from the left! is state number 21@from Fig. 8~a!# because in
the second column of sites site 02 is connected to an en
the left, and sites 27 and 23 are connected through a loo
the left. The next connectivity state is state number 15@from
Fig. 8~a!# because this corresponds to the left-side conn
tivity of site 03 to an end and left-side connectivity of sit
28 and 21 through a loop in the third column of sites, etc

The transfer matrixT is constructed in the same way a
for Hamiltonian circuits by combining connectivity state
@Fig. 8~a!# with bonds and end distributions@Fig. 8~b!# and
finding out the connectivity states of the next neighbori
column on the right obtained by this combination. Figure
illustrates this process. For example the combination of
connectivity state 1 from Fig. 8~a! with bond distribution
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#28I from Fig. 8~b! leads to the connectivity state 12@Fig.
9~a!#. Similarly there are disallowed cases; triple connectio
@Fig. 9~d!#, double connections of the ends@Fig. 9~e!#, and
the formation of loops@Fig. 9~f!# ~including Hamiltonian cir-
cuits, since now we exclude these in the generation of cha
with ends!. Additionally these combinations cannot lead t
the formation of more than two ends@such as in Fig. 9~g!#, to
the disintegration of the chain@as shown in Fig. 9~h!#, or to
unoccupied sites@Fig. 9~c!#. For Hamiltonian circuits on the
square lattice the elements of the transfer matrixT are either
0 or 1, but for Hamiltonian chains with ends, integers larg
than 1 are allowed. Figures 9~i!–9~j! illustrate the possibility
of a given connectivity state combined with two differen
bond distributions that both lead to the same connectiv

FIG. 9. Illustration of the method of construction of the transfer matrix fo
the enumeration of Hamiltonian paths~chains! within 43n rectangles on
the square lattice.
s

ns

r

y

state. The vectors of the starting statesu and of the end state
v are constructed in the same way as for Hamiltonian
cuits. To find out the starting connectivity states we exam
all bond distributions~generalized by incorporating the en
points of chains!, that do not contain unoccupied sites@such
as numbers 7I , 8I , 27I, 28I, 31I– 36I, 47I, 50I, 53I, 58I– 65I in Fig.
8~b!#, and figure out connectivity states to which they tran
form if the horizontal bonds joining them with bonds in th
next column on the right side are added. For example dis
bution 33I in Fig. 8~b! transforms to connectivity number 1
in Fig. 8~a!, so state number 14 is a starting state. So
starting connectivity states are degenerate, i.e., several
ferent bond distributions lead to the same state. For exam
state 27 in Fig. 8~a! is threefold degenerate, because it can
obtained from three different bond distributions, 59I, 60I, and
64I in Fig. 8~b!. The vectorv of the ending states is con
structed by finding out which connectivity state combin
with the bond distributions leads to the formation of
Hamiltonian chain. Figure 9~b! shows an example of the
connectivity state leading to the formation of a Hamiltoni
chain. Similarly as with starting states, ending states m
also be degenerate. For example the connectivity state n
ber 8 is doubly degenerate as an ending state becaus
combinations with both bond distributions 47I and 53I in Fig.
8~b! lead to the formation of Hamiltonian chains.

The problem of degeneracy could be eliminated by
fining the state as a combination of the ‘‘old’’ connectivi
state with one bond distribution, but this would significan
increase the size of the transfer matrix for enumerations.
enumeration of the number of possible Hamiltonian chain
carried out by employing the same equation@Eq. ~14!# as for
Hamiltonian circuits. Table IV shows examples of the en
meration of Hamiltonian chains on a square lattice in a re
angle of sizem3n for several values ofm and variousn.

THE NUMBER OF POSSIBLE CONNECTIVITY STATES
FOR THE HAMILTONIAN CHAINS WITH ENDS

The number of possible connectivity states for Ham
tonian circuitsNm

circ is given by Eq.~10!. For Hamiltonian
chains with ends the number of possible connectivity sta
Nm

chain contain those for Hamiltonian circuits plus additio
ally all different connectivity states containing one or tw
ends, i.e.,

Nm
chain5Nm

circ1 (
k50

@m/2# F S m22k
1 D1S m22k

2 D G S m
2kD M2k ,

~15!

whereM2k is given by Eq.~9! for nonintersecting connec
tivities.

Using the identity for binomial coefficients

S n
1D1S n

2D5S n11
2 D ~16!

and Eqs.~9!–~10! we obtain the following formula for the
number of possible nonintersecting connectivity states
Hamiltonian chains:
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Nm
chain5S m11

2 D1 (
k51

@m/2# F S m1122k
2 D11G

3
m!

k! ~k11!! ~m22k!!
. ~17!

The third column in Table II shows the number of all po
sible connectivity states for Hamiltonian chainsNm

chain calcu-
lated from Eq.~17! for variousm. Similarly as for Hamil-
tonian circuits some of the connectivity states can
eliminated because of bad parity. The only connectiv
states with bad parities are the same as those eliminate
Hamiltonian circuits.

The fourth column in Table II shows the reduced nu
ber of all possible connectivity states for Hamiltonian cha
Nm

chain,r calculated for varyingm, after elimination of connec-
tivity states with wrong parities. We can see that the elim
nation of states with wrong parities for chains with ends d
not lead to a significant reduction in the number of conn
tivity states. Such a reduction was relatively much more s
stantial for Hamiltonian circuits.

Another interesting problem is the comparison of t
number of bond distributions for Hamiltonian paths~chains
with ends! and Hamiltonian circuits~no ends!. Figures. 2~b!
and 8~b! show all possible bond distributions form54
points for circuits and paths, respectively. The number
bond distributions~including ends! for paths ~chains! in-
cludes bond distributions with zero ends—same as for
cuits, distributions with one end, and finally distributio
with two ends. In the construction of bond distributions f
paths ends@given by small circles in Fig. 8~b!# cannot be
placed in the middle of a sequence of connected bonds.
two ends cannot be placed at two opposite ends of one b
or a sequence of connected bonds. The number of pos
bond distributionsBm for chains depends on the width~cross
section! of the rectanglem, but cannot be expressed by
simple formula such as Eq.~12! for circuits. The last column
of Table III shows the number of possible bond distributio
Bm ~including ends! for chains for varying width of the rect
anglem. The middle column in Table III shows the corre
sponding number of bond distributions for Hamiltonian c
cuits, which is given by the simple formulaBm52m21.
Table III shows that the number of bond distributions f
chains ~with ends! increases significantly by compariso
with circuits containing no ends.

RESULTS FOR CHAINS WITH ENDS

Table V shows enumerations of the number of Ham
tonian chains~with two ends! Nc on the square lattice within
the rectangles of sizem3n for various widths of the rect-
anglem and variable lengthn. The results (Nc vs n! were
plotted in Fig. 10 for varying widthm of them3n rectangle.

Similarly as in Ref. 25 we calculated connective co
stantskm , @defined by Eq.~3!# for different widthsm of the
rectangle. The limiting valueskm for infinite strips for
Hamiltonian chains were the same as for Hamiltonian
cuits ~shown in Table I in Ref. 25!.

Calculations have been performed for rectangles w
maximum widthm58. For largerm the problem become
e
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for
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the increasing size of the transfer matrix. Form58 there are
2766 connectivity states, and this number can be further
duced to 2626 by elimination of states with bad parity. T
transfer matrixT is then of size 262632626. For example,
for the case of a rectangle of size 103n the number of the
connectivity states is 24 002, and for the case of 143n there
are 2 046 816 states. MatricesT are sparse~most of their
elements are zeros!, and we could use methods developed
sparse matrices to perform calculations for rectangles w
than 8. We should note that we can also reduce the num
of Hamiltonian chains by eliminating states which are rela
by various symmetry relations. To eliminate the symmetr
associated with the shape of them3n rectangle we divide
the number of Hamiltonian chains obtained from Eq.~1! by
s/2 wheres is the symmetry number (s54 for rectangles
with nÞm ands58 for squaresn5m).

Tables IV and V show clearly how powerful is the tran
fer matrix method. These exact enumerations could neve
obtained by using traditional methods. The exact enume
tions of self-avoiding walks are important for the mathema
cal theory of self-avoiding walk and for the renormalizatio
group theory. These exact results shown in Tables IV an
are also easy to verify proof that our method is free of erro

DISCUSSION

The transfer matrix method is a powerful tool for stud
ing protein conformations. It is extremely fast since, inste
of growing conformations one bond at a time, we build t
whole conformation column by column and complete
avoid attrition. If each site within a column were assigned
‘‘letter’’ of the amino acid alphabet then, assuming that w
have only interactions between nonbonded nearest ne
bors, all calculations of energy with the addition of a ne
column can be immediately performed and some blocks
columns of highest energy could be discarded.

A major advantage of the transfer matrix method is th
once the transfer matrix is calculated, enumerations can
carried out easily for any lengthn. The only limitation is due
to specific computer limits in treating large integers. T
method of calculating the transfer matrix can be easily v

TABLE III. The number of possible bond distributions for rectangles
varying width m for Hamiltonian circuits~second column! and for Hamil-
tonian chains~last column!.

m
Bm52m21

circuits
Bm

chains

2 2 7
3 4 22
4 8 65
5 16 181
6 32 482
7 64 1 240
8 128 3 104
9 256 7 600

10 512 18 272
11 1024 43 264
12 2048 101 120
13 4096 233 728
14 8 192 535 040
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TABLE IV. Enumerations of Hamiltonian circuits onm3n rectangles.

n m53 m54 m55 m56 m57

2 1 1 1 1 1
3 0 2 0 4 0
4 2 6 14 37 92
5 0 14 0 154 0
6 4 37 154 1 072 5 320
7 0 92 0 5 320 0
8 8 236 1 696 32 675 301 384
9 0 596 0 175 294 0

10 16 1 517 18 684 1 024 028 17 066 49
11 0 3 846 0 5 668 692 0
12 32 9 770 205 832 32 463 802 966 656 13
13 0 24 794 0 181 971 848 0
14 64 62 953 2 267 544 1 033 917 350 54 756 073 5
15 0 159 800 0 5 824 476 298 0
16 128 405 688 24 980 352 32 989 068 162 3 101 696 069 9
17 0 1 029 864 0 186 210 666 468 0
18 256 2 614 457 275 195 536 1 053 349 394 128 175 698 206 778
19 0 6 637 066 0 5 950 467 515 104
20 512 16 849 006 3 031 685 984 33 643 541 208 290 9 952 578 156 814

n m58 m59 m510

2 1 1 1
3 8 0 16
4 236 596 1 517
5 1 696 0 18 684
6 32 675 175 294 1 024 028
7 301 384 0 17 066 492
8 4 638 576 49 483 138 681 728 204
9 49 483 138 0 13 916 993 782

10 681 728 204 13 916 993 782 467 260 456 608
11 7 837 276 902 0 10 754 797 724 124
12 102 283 239 429 3 913 787 773 536 328 076 475 659 033
13 1 220 732 524 976 0 8 091 313 110 371 792
14 15 513 067 188 008 1 100 831 164 969 864 233 977 398 720 987 284
15 188 620 289 493 918 0 6 002 042 996 016 384 360
16 2 365 714 170 297 014 309 656 520 296 472 068 168 435 972 906 750 526 954
17 29 030 309 635 705 054 0 4 418 118 886 987 754 341 770
18 361 749 878 496 079 778 87 106 950 271 042 689 032 121 913 396 076 344 218 930 045
19 4 459 396 682 866 920 534 0 3 238 352 620 436 399 748 512 108
20 55 391 169 255 983 979 555 24 503 579 727 182 933 530 758 88 514 516 642 574 170 326 003 422
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torized and parallelized. Because of this and the elimina
of attrition, the method has a significant advantage over
traditional method of computer generation of self-avoidi
walks which could be parallelized, but is difficult to vecto
ize.

FIG. 10. The plot of the number of possible Hamiltonian chainsNc vs the
lengthn for varying widthsm of the m3n rectangle.
n
e

The main difficulty of the present method is its rapid
growing memory requirements. Consequently complete e
merations, especially for large numbers of points in 3D
the cubic lattice become difficult. We could, however, u
the transfer matrix method for random sampling of the co
formational space. We could randomly choose the conn
tivity states and the bond distributions and generate the c
pact conformations without attrition. Another majo
advantage of this method is that we may easily reduce
number of conformations by imposing constraints on
generated chains, for example from NMR NOEs we co
know about various proximate pairs of residues. We mi
also fix one or both ends of the chain, or fix positions
some secondary structure elements of proteins, such aa
helices orb sheets. Such imposed external constraints wo
significantly reduce the conformational space and enable
complete generation of conformations for much long
chains. The fixing of a certain point in a protein enables
immediate elimination of all conformations not compatib
with the imposed constraint, thereby eliminating unneed
computations. The transfer method is powerful in this rega
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TABLE V. Enumerations of Hamiltonian walks~chains! on m3n rectangles.

n m52 m53 m54 m55

2 4 8 14 22
3 8 20 62 132
4 14 62 276 1 006
5 22 132 1 006 4 324
6 32 336 3 610 26 996
7 44 688 12 010 109 722
8 58 1 578 38 984 602 804
9 74 3 190 122 188 2 434 670

10 92 6 902 375 122 12 287 118
11 112 13 878 1 128 446 49 852 35
12 134 29 038 3 342 794 237 425 49
13 158 58 238 9 767 588 969 300 69
14 184 119 518 28 217 820 4 434 629 91
15 212 239 390 80 709 424 18 203 944 45
16 242 485 822 228 864 620 80 978 858 52
17 274 972 414 664 060 262 333 840 165 28
18 308 1 960 830 1 800 346 140 1 456 084 764 3
19 344 3 923 326 5 002 457 832 6 021 921 661 7
20 382 7 882 494 13 825 549 136 25 904 211 802 0

n m56 m57 m58

2 32 44 58
3 336 688 1 578
4 3 610 12 010 38 984
5 26 996 109 722 602 804
6 229 348 1 620 034 12 071 462
7 1 620 034 13 535 280 175 905 310
8 12 071 462 175 905 310 3 023 313 284
9 82 550 864 1 449 655 468 43 551 685 370

10 572 479 244 17 198 428 572 682 958 971 778
11 3 808 019 582 142 545 533 336 9 735 477 214 522
12 25 304 433 030 1 580 868 297 042 144 397 808 917 246
13 164 452 629 818 13 246 916 541 978 2 033 155 413 979 838
14 1 062 773 834 046 139 620 415 865 920 29 105 375 742 858 518
15 6 777 328 517 896 1 183 338 916 049 852 404 654 754 079 984 324
16 42 944 798 886 570 11 997 107 474 280 224 5 656 098 437 704 094 140
17 269 706 791 277 978 102 719 325 162 193 010 77 710 312 229 803 403 554
18 1 683 956 271 732 804 1 010 824 101 911 587 178 1 067 886 114 091 399 967 842
19 10 445 800 698 724 066 8 728 784 450 632 453 306 14 517 649 840 508 475 301 004
20 64 470 330 298 173 718 83 947 749 266 911 632 982 196 974 144 293 101 997 656 968
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We may easily generalize the transfer matrix meth
used for counting the compact Hamiltonian walks to the g
eration of compact conformations. For counting conform
tions it was useful to define connectivity states. This defi
tion of ‘‘states’’ allows the unique generation of the cha
only in the case of Hamiltonian circuits in 2D on the squa
lattice. In the case of circuits on the cubic lattice~as shown
in a later paper! or Hamiltonian chains with ends a dege
eracy problem is encountered. The sequence of connect
states does not uniquely describe the conformation o
chain. The uniqueness of a conformation is specified only
alternating between the sequence of bond distribution st
and connectivity states. Practically, in the generation
unique compact conformations it is useful to define in ad
tion to the transfer matrixT describing the possibility of
transitions between different connectivity states, another
trix S with elementsSi j showing the connectivity state ob
e

d
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-
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ity
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es
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tained by the combination of thej th connectivity state and
the i th bond distribution.

The transfer matrix method could also be easily gen
alized to irregular protein shapes. Equation~14! would then
be replaced by

Nc5uT~T2T3T4 ...Tn21!v, ~18!

where the individual transfer matricesT i for transitions be-
tween thei th and the (i 11)th columns differ in size but are
specified to conform to the shape.

The new approach presented in this paper ought to
come a standard useful method for studying globular p
teins and compact polymers because of its large advant
over previous methods, including a recently published co
binatorial algorithm based on two-matching and patching
bipartite graphs.27

One important application could be its use to obtain
timates of the chain entropies of proteins. Other direct ap
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cations to optimization problems such as the traveling sa
man problem are also possible.

We have developed a new very efficient and attritio
free method for generating compact lattice conformatio
This allows for the studies of the complete conformatio
space for larger lattice proteins, where traditional meth
are restricted to sampling of the conformational space.
applicability of this new theoretical tool is currently und
study.
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